Dodatkowe przykłady dopasowywane są do haseł w zautomatyzowany sposób - nie gwarantujemy ich poprawności.
Intuitively, a strictly positive measure is one that is "nowhere zero", or that it is zero "only on points".
Then a measure μ on (X, Σ) is called strictly positive if every non-empty open subset of X has strictly positive measure.
Wiener measure on the space of continuous paths in R is a strictly positive measure - Wiener measure is an example of a Gaussian measure on an infinite-dimensional space.